Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Clin Med (Lond) ; 2020 May 05.
Artículo en Inglés | MEDLINE | ID: covidwho-2302050

RESUMEN

Rheumatology teams care for patients with diverse, systemic autoimmune diseases who are often immunosuppressed and at high risk of infections. The current COVID-19 pandemic has presented particular challenges in caring for and managing this patient group. The office of the chief medical officer (CMO) for England contacted the rheumatology community to provide expert advice on the identification of extremely vulnerable patients at very high risk during the COVID-19 pandemic who should be 'shielded'. This involves the patients being asked to strictly self-isolate for at least 12 weeks with additional funded support provided for them to remain at home. A group of rheumatologists (the authors) have devised a pragmatic guide to identifying the very highest risk group using a rapidly developed scoring system which went live simultaneous with the Government announcement on shielding and was cascaded to all rheumatologists working in England.

2.
EClinicalMedicine ; 47: 101409, 2022 May.
Artículo en Inglés | MEDLINE | ID: covidwho-1800090

RESUMEN

Background: In COVACTA, a randomised, placebo-controlled trial in patients hospitalised with coronavirus disease-19 (COVID-19), tocilizumab did not improve 28-day mortality, but shortened hospital and intensive care unit stay. Longer-term effects of tocilizumab in patients with COVID-19 are unknown. Therefore, the efficacy and safety of tocilizumab in COVID-19 beyond day 28 and its impact on Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) clearance and antibody response in COVACTA were investigated. Methods: Adults in Europe and North America hospitalised with COVID-19 (N = 452) between April 3, 2020 and May 28, 2020 were randomly assigned (2:1) to double-blind intravenous tocilizumab or placebo and assessed for efficacy and safety through day 60. Assessments included mortality, time to hospital discharge, SARS-CoV-2 viral load in nasopharyngeal swab and serum samples, and neutralising anti-SARS-CoV-2 antibodies in serum. ClinicalTrials.gov registration: NCT04320615. Findings: By day 60, 24·5% (72/294) of patients in the tocilizumab arm and 25·0% (36/144) in the placebo arm died (weighted difference -0·5% [95% CI -9·1 to 8·0]), and 67·0% (197/294) in the tocilizumab arm and 63·9% (92/144) in the placebo arm were discharged from the hospital. Serious infections occurred in 24·1% (71/295) of patients in the tocilizumab arm and 29·4% (42/143) in the placebo arm. Median time to negative reverse transcriptase-quantitative polymerase chain reaction result in nasopharyngeal/oropharyngeal samples was 15·0 days (95% CI 14·0 to 21·0) in the tocilizumab arm and 21·0 days (95% CI 14·0 to 28·0) in the placebo arm. All tested patients had positive test results for neutralising anti-SARS-CoV-2 antibodies at day 60. Interpretation: There was no mortality benefit with tocilizumab through day 60. Tocilizumab did not impair viral clearance or host immune response, and no new safety signals were observed. Future investigations may explore potential biomarkers to optimize patient selection for tocilizumab treatment and combination therapy with other treatments. Funding: F. Hoffmann-La Roche Ltd and the US Department of Health and Human Services, Office of the Assistant Secretary for Preparedness and Response, Biomedical Advanced Research and Development Authority, under OT number HHSO100201800036C.

3.
Trials ; 22(1): 270, 2021 Apr 12.
Artículo en Inglés | MEDLINE | ID: covidwho-1181120

RESUMEN

OBJECTIVES: The primary objective of MATIS is to determine the efficacy of ruxolitinib (RUX) or fostamatinib (FOS) compared to standard of care (SOC) with respect to reducing the proportion of hospitalised patients progressing from mild or moderate to severe COVID-19 pneumonia. Secondary objectives, at 14 and 28 days, are to: Determine the efficacy of RUX or FOS to reduce mortality Determine the efficacy of RUX or FOS to reduce the need for invasive ventilation or ECMO Determine the efficacy of RUX or FOS to reduce the need for non-invasive ventilation Determine the efficacy of RUX or FOS to reduce the proportion of participants suffering significant oxygen desaturation Determine the efficacy of RUX or FOS to reduce the need for renal replacement therapy Determine the efficacy of RUX and FOS to reduce the incidence of venous thromboembolism Determine the efficacy of RUX and FOS to reduce the severity of COVID-19 pneumonia [graded by a 9-point modified WHO Ordinal Scale* Determine the efficacy of RUX or FOS to reduce systemic inflammation Determine the efficacy of RUX or FOS to the incidence of renal impairment Determine the efficacy of RUX or FOS to reduce duration of hospital stay Evaluate the safety of RUX and FOS for treatment of COVID-19 pneumonia. TRIAL DESIGN: A multi-arm, multi-stage (3-arm parallel-group, 2-stage) randomised controlled trial that allocates participants 1:1:1 and tests for superiority in experimental arms versus standard of care. PARTICIPANTS: Patients will be recruited while inpatients during hospitalisation for COVID-19 in multiple centres throughout the UK including Imperial College Healthcare NHS Trust. INCLUSION: Patients age ≥ 18 years at screening Patients with mild or moderate COVID-19 pneumonia, defined as Grade 3 or 4 severity by the WHO COVID-19 Ordinal Scale Patients meeting criteria: Hospitalization AND SARS-CoV2 infection (clinically suspected or laboratory confirmed) AND Radiological change consistent with COVID-19 disease CRP ≥ 30mg/L at any time point Informed consent from patient or personal or professional representative Agreement to abstain from sexual intercourse or use contraception that is >99% effective for all participants of childbearing potential for 42 days after the last dose of study drug. For male participants, agreement to abstain from sperm donation for 42 days after the last dose of study drug. EXCLUSION: Requiring either invasive or non-invasive ventilation including CPAP or high flow nasal oxygen at any point after hospital admission but before baseline, not related to a pre-existing condition (e.g., obstructive sleep apnoea) Grade ≥ 5 severity on the modified WHO COVID-19 Ordinal Scale, i.e. SpO2 < 90% on ≥ 60% inspired oxygen by facemask at baseline; non-invasive ventilation; or invasive mechanical ventilation In the opinion of the investigator, progression to death is inevitable within the next 24 hours, irrespective of the provision of therapy Known severe allergic reactions to the investigational agents Child-Pugh B or C grade hepatic dysfunction Use of drugs within the preceding 14 days that are known to interact with any study treatment (FOS or RUX), as listed in the Summary of Product Characteristics Pregnant or breastfeeding Any medical condition or concomitant medication that in the opinion of the investigator would compromise subjects' safety or compliance with study procedures. Any medical condition which in the opinion of the principal investigator would compromise the scientific integrity of the study Non-English speakers will be able to join the study. If participants are unable to understand verbal or written information in English, then hospital translation services will be requested at the participating site for the participant where possible. INTERVENTION AND COMPARATOR: RUXOLITINIB (RUX) (14 days): An oral selective and potent inhibitor of Janus Associated Kinases (JAK1 and JAK2) and cell proliferation (Verstovek, 2010). It is approved for the treatment of disease-related splenomegaly or constitutional symptoms in myelofibrosis, polycythaemia vera and graft-versus-host-disease. RUX will be administered orally 10mg bd Day 1-7 and 5mg bd Day 8-14. FOSTAMATINIB (FOS) (14 days): An oral spleen tyrosine kinase inhibitor approved for the treatment of thrombocytopenia in adult participants with chronic immune thrombocytopenia. FOS will be administered orally 150mg bd Day 1-7 and 100mg bd Day 8-14. Please see protocol for recommended dose modifications where required. COMPARATOR (Standard of Care, SOC): experimental arms will be compared to participants receiving standard of care. It is accepted that SOC may change during a rapidly evolving pandemic. Co-enrolment to other trials and rescue therapy, either pre- or post-randomisation, is permitted and will be accounted for in the statistical analysis. MAIN OUTCOMES: Pairwise comparison (RUX vs SOC and FOS vs SOC) of the proportion of participants diagnosed with severe COVID-19 pneumonia within 14 days. Severe COVID-19 pneumonia is defined by a score ≥ 5 on a modified WHO COVID-19 Ordinal Scale, comprising the following indicators of disease severity: Death OR Requirement for invasive ventilation OR Requirement for non-invasive ventilation including CPAP or high flow oxygen OR O2 saturation < 90% on ≥60% inspired oxygen RANDOMISATION: Participants will be allocated to interventions using a central web-based randomisation service that generates random sequences using random permuted blocks (1:1:1), with stratification by age (<65 and ≥65 years) and site. BLINDING (MASKING): No participants or caregivers are blinded to group assignment. Clinical outcomes will be compared blind to group assignment. NUMBERS TO BE RANDOMISED (SAMPLE SIZE): For an early informal dose examination by the Data Monitoring Committee a minimum of 30 participants will be recruited. For Stage 1 of this multi-arm multi-stage study, 171 participants will be randomised, with 57 participants in each arm. If at least one experimental intervention shows promise, then Stage 2 will recruit a further 95 participants per arm. Sample size calculations are given in the protocol. TRIAL STATUS: Recruitment is ongoing and started 2nd October 2020. We anticipate completion of Stage 1 by July 2021 and Stage 2 by April 2022. The current protocol version 2.0 of 11th February 2021 is appended. TRIAL REGISTRATION: EudraCT: 2020-001750-22 , 9th July 2020 ClinicalTrials.gov: NCT04581954 , 9th October 2020 FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest of expediting dissemination of this material, familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Oxazinas/uso terapéutico , Pirazoles/uso terapéutico , Piridinas/uso terapéutico , Adulto , Aminopiridinas , Humanos , Morfolinas , Nitrilos , Pandemias , Pirimidinas , Ensayos Clínicos Controlados Aleatorios como Asunto , Respiración Artificial , Resultado del Tratamiento , Tromboembolia Venosa/prevención & control
4.
Clin Med (Lond) ; 21(3): e287-e289, 2021 05.
Artículo en Inglés | MEDLINE | ID: covidwho-1158450

RESUMEN

Coronavirus disease 2019 (COVID-19) was first identified in December 2019 in Wuhan, China. The first analyses of cases described high numbers of critically ill patients requiring intensive care admission with significant late inflammatory features. By the time the first cases of SARS-CoV-2 infection were diagnosed in the UK, a wide range of drugs were under consideration and it became clear that the input of clinicians covering all organ systems (in particular, infectious diseases, haematology, rheumatology, renal medicine and intensive care) and of expert specialist pharmacists was necessary at the local level. Thus, an expert multidisciplinary (MDT) group within our organisation was convened to offer a standardised approach and robust clinical governance for the treatment of COVID-19 patients admitted to our hospitals and rapidly develop standards of care as evidence evolved. This commentary explores the methods and mechanisms for creating an MDT COVID-19 treatment working group which are applicable to any hospital likely to admit and care for high numbers of COVID-19 patients and demonstrates how the structure and governance of the group allowed for rapid adoption of both dexamethasone and tocilizumab into standard of care as data became available.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Pandemias , Humanos , SARS-CoV-2 , Nivel de Atención
5.
N Engl J Med ; 384(16): 1503-1516, 2021 04 22.
Artículo en Inglés | MEDLINE | ID: covidwho-1101724

RESUMEN

BACKGROUND: Coronavirus disease 2019 (Covid-19) is associated with immune dysregulation and hyperinflammation, including elevated interleukin-6 levels. The use of tocilizumab, a monoclonal antibody against the interleukin-6 receptor, has resulted in better outcomes in patients with severe Covid-19 pneumonia in case reports and retrospective observational cohort studies. Data are needed from randomized, placebo-controlled trials. METHODS: In this phase 3 trial, we randomly assigned patients who were hospitalized with severe Covid-19 pneumonia in a 2:1 ratio receive a single intravenous infusion of tocilizumab (at a dose of 8 mg per kilogram of body weight) or placebo. Approximately one quarter of the participants received a second dose of tocilizumab or placebo 8 to 24 hours after the first dose. The primary outcome was clinical status at day 28 on an ordinal scale ranging from 1 (discharged or ready for discharge) to 7 (death) in the modified intention-to-treat population, which included all the patients who had received at least one dose of tocilizumab or placebo. RESULTS: Of the 452 patients who underwent randomization, 438 (294 in the tocilizumab group and 144 in the placebo group) were included in the primary and secondary analyses. The median value for clinical status on the ordinal scale at day 28 was 1.0 (95% confidence interval [CI], 1.0 to 1.0) in the tocilizumab group and 2.0 (non-ICU hospitalization without supplemental oxygen) (95% CI, 1.0 to 4.0) in the placebo group (between-group difference, -1.0; 95% CI, -2.5 to 0; P = 0.31 by the van Elteren test). In the safety population, serious adverse events occurred in 103 of 295 patients (34.9%) in the tocilizumab group and in 55 of 143 patients (38.5%) in the placebo group. Mortality at day 28 was 19.7% in the tocilizumab group and 19.4% in the placebo group (weighted difference, 0.3 percentage points; 95% CI, -7.6 to 8.2; nominal P = 0.94). CONCLUSIONS: In this randomized trial involving hospitalized patients with severe Covid-19 pneumonia, the use of tocilizumab did not result in significantly better clinical status or lower mortality than placebo at 28 days. (Funded by F. Hoffmann-La Roche and the Department of Health and Human Services; COVACTA ClinicalTrials.gov number, NCT04320615.).


Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Tratamiento Farmacológico de COVID-19 , Receptores de Interleucina-6/antagonistas & inhibidores , Adulto , Anciano , Anticuerpos Monoclonales Humanizados/efectos adversos , COVID-19/complicaciones , COVID-19/mortalidad , COVID-19/terapia , Método Doble Ciego , Femenino , Mortalidad Hospitalaria , Hospitalización , Humanos , Infusiones Intravenosas , Unidades de Cuidados Intensivos , Masculino , Persona de Mediana Edad , Respiración Artificial , Insuficiencia del Tratamiento
6.
Eur Heart J Case Rep ; 5(2): ytab013, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: covidwho-1069253

RESUMEN

BACKGROUND: Coronavirus disease 2019 (COVID-19) myocarditis is emerging as a component of the hyperactive inflammatory response secondary to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Isolated gastrointestinal symptoms are uncommon presenting features in adults with COVID-19 myocarditis. The availability of antibody testing is a valuable addition to the confirmation of COVID-19, when repeated reverse transcriptase-polymerase chain reaction of nasopharyngeal swabs are negative. CASE SUMMARY: A young healthcare worker presented with dizziness and pre-syncope, 4 weeks after his original symptoms that included fever, lethargy, and diarrhoea. Despite 2 weeks of isolation, followed by a quiescent spell, his symptoms had returned. Shortly after, he presented in cardiogenic shock (left ventricular ejection fraction 25%), that required vasopressor support, at the height of the COVID-19 pandemic. Cardiac magnetic resonance imaging suggested florid myocarditis. Three nasopharyngeal swabs (Days 1, 3, and 5) were negative for SARS-CoV-2, but subsequent serology (Day 13) confirmed the presence of SARS-CoV-2 IgG. Treatment with intravenous immunoglobulin and glucocorticoids led to full recovery. DISCUSSION: Our case study highlights the significance of the use of the available serological assays for diagnosis of patients presenting late with SARS-CoV-2. Importantly, it supports further research in the use of immunomodulatory drugs for the hyperinflammatory microenvironment induced by COVID-19.

7.
Expert Rev Clin Immunol ; 16(12): 1185-1204, 2020 12.
Artículo en Inglés | MEDLINE | ID: covidwho-965246

RESUMEN

Introduction: The mortality of coronavirus disease 2019 (COVID-19) is frequently driven by an injurious immune response characterized by the development of acute respiratory distress syndrome (ARDS), endotheliitis, coagulopathy, and multi-organ failure. This spectrum of hyperinflammation in COVID-19 is commonly referred to as cytokine storm syndrome (CSS). Areas covered: Medline and Google Scholar were searched up until 15th of August 2020 for relevant literature. Evidence supports a role of dysregulated immune responses in the immunopathogenesis of severe COVID-19. CSS associated with SARS-CoV-2 shows similarities to the exuberant cytokine production in some patients with viral infection (e.g.SARS-CoV-1) and may be confused with other syndromes of hyperinflammation like the cytokine release syndrome (CRS) in CAR-T cell therapy. Interleukin (IL)-6, IL-8, and tumor necrosis factor-alpha have emerged as predictors of COVID-19 severity and in-hospital mortality. Expert opinion: Despite similarities, COVID-19-CSS appears to be distinct from HLH, MAS, and CRS, and the application of HLH diagnostic scores and criteria to COVID-19 is not supported by emerging data. While immunosuppressive therapy with glucocorticoids has shown a mortality benefit, cytokine inhibitors may hold promise as 'rescue therapies' in severe COVID-19. Given the arguably limited benefit in advanced disease, strategies to prevent the development of COVID-19-CSS are needed.


Asunto(s)
COVID-19 , Síndrome de Liberación de Citoquinas , Citocinas/sangre , SARS-CoV-2/metabolismo , Terapias en Investigación , COVID-19/sangre , COVID-19/mortalidad , COVID-19/prevención & control , COVID-19/terapia , Síndrome de Liberación de Citoquinas/sangre , Síndrome de Liberación de Citoquinas/mortalidad , Síndrome de Liberación de Citoquinas/prevención & control , Síndrome de Liberación de Citoquinas/terapia , Humanos
10.
Clin Med (Lond) ; 2020 May 01.
Artículo en Inglés | MEDLINE | ID: covidwho-269951

RESUMEN

Rheumatology teams care for patients with diverse, systemic autoimmune diseases who are often immunosuppressed and at high risk of infections. The current COVID-19 pandemic has presented particular challenges in caring for and managing this patient group. The office of the chief medical officer (CMO) for England contacted the rheumatology community to provide expert advice on the identification of extremely vulnerable patients at very high risk during the COVID-19 pandemic who should be 'shielded'. This involves the patients being asked to strictly self-isolate for at least 12 weeks with additional funded support provided for them to remain at home. A group of rheumatologists (the authors) have devised a pragmatic guide to identifying the very highest risk group using a rapidly developed scoring system which went live simultaneous with the Government announcement on shielding and was cascaded to all rheumatologists working in England.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA